Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A
نویسندگان
چکیده
Heat, freshand sea-water balances indicate that the late-summer rate of submarine melting at the terminus of tidewater LeConte Glacier, Alaska, U.S.A., in 2000 was about 12mdw.e., averaged over the submerged face. This is 57% of the estimated total ice loss at the terminus (calving plus melting) at this time. Submarine melting may thus providea significantcontribution to the overall ablationof a tidewater glacier. Oceanographic measurements (conductivity^temperature^depth) made 200^500m from the terminus identified an isohaline (27ppt) and isothermal (7.23C) layer extending from 130m depth to the fjord floor. Capping this is a 40m thick overflow plume, distinguished by high outflow rates, low salinity (22^25ppt) and lower temperatures (5^63C). Mixing models indicate that fresh water comprised about 11% of this plume; it originates mostly as subglacial discharge whose buoyancy drives convection at the terminus. Deep, warm saline waters are incorporated into the plume as it ascends, causing substantialmelting of ice along the submarine face. The calving terminus undergoes seasonal changes that coincide with changes in subglacial discharge and fjord water temperatures, and we suggest that these fluctuations in terminus position are directly related to changes in submarine melting.
منابع مشابه
Seasonal fluctuations in the advance of a tidewater glacier and potential causes: Hubbard Glacier, Alaska, USA
Satellite imagery has been used to acquire seasonal terminus positions of tidewater Hubbard Glacier, Alaska, USA, from 1992 to 2006. During this 15 year time period, the width-averaged advance of the entire terminus has been 620m at a mean rate of 35ma. Seasonal fluctuation of the terminus ranges from 150 to 200m on average and varies spatially. A section of the terminus, near a narrow gap wher...
متن کاملDistributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier
Submarine melt can account for substantial mass loss at tidewater glacier termini. However, the processes controlling submarine melt are poorly understood due to limited observations of submarine termini. Here at a tidewater glacier in central West Greenland, we identify subglacial discharge outlets and infer submarine melt across the terminus using direct observations of the submarine terminus...
متن کاملEstimating Spring Terminus Submarine Melt Rates at a Greenlandic Tidewater Glacier Using Satellite Imagery
Oceanic forcing of the Greenland Ice Sheet is believed to promote widespread thinning at tidewater glaciers, with submarine melting proposed as a potential trigger of increased glacier calving, retreat, and subsequent acceleration. The precise mechanism(s) driving glacier instability, however, remain poorly understood, and while increasing evidence points to the importance of submarine melting,...
متن کاملRapid thinning of lake-calving Yakutat Glacier and the collapse of the Yakutat Icefield, southeast Alaska, USA
Both lake-calving Yakutat Glacier (337 km2), Alaska, USA, and its parent icefield (810 km2) are experiencing strong thinning, and under current climate conditions will eventually disappear. Comparison of digital elevation models shows that Yakutat Glacier thinned at area-averaged rates of 4.76 0.06mw.e. a (2000–07) and 3.66 0.03mw.e. a (2007–10). Simultaneously, adjacent Yakutat Icefield land-t...
متن کاملModelling the impact of submarine frontal melting and ice mélange on glacier dynamics
Submarine melting of the calving face of tidewater glaciers and the mechanical back force applied by the ice mélange layer are two mechanisms generally proposed to explain seasonal variations at the calving front of tidewater glaciers. However, the way these processes affect the calving rate and glacier dynamics remains uncertain. In this study, we used a finite element-based model that solves ...
متن کامل